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Abstract Investigations on the impact of chemicals on the
environment and human health have led to the development
of an exposome concept. The exposome refers to the totality
of exposures received by a person during life, including expo-
sures to life-style factors, from the prenatal period to death.
The exposure to genotoxic chemicals and their reactive me-
tabolites can induce chemical modifications of DNA, such as,
for example, DNA adducts, which have been extensively
studied and which play a key role in chemically induced car-
cinogenesis. Development of different methods for the identi-
fication of DNA adducts has led to adopting DNA adductomic
approaches. The ability to simultaneously detect multiple
PAH-derived DNA adducts may allow for the improved as-
sessment of exposure, and offer a mechanistic insight into the
carcinogenic process following exposure to PAH mixtures.
The major advantage of measuring chemical-specific DNA
adducts is the assessment of a biologically effective dose.
This review provides information about the occurrence of
the polycyclic aromatic hydrocarbons (PAHs) and their influ-
ence on human exposure and biological effects, including
PAH-derived DNA adduct formation and repair processes.
Selected methods used for determination of DNA adducts
have been presented.

Keywords Polycyclic aromatic hydrocarbons .

Benzo[a]pyrene . DNA damage . PAH–DNA adducts

Introduction

It is well known that exposure to toxic chemicals can cause
many harmful health effects, among which the most impor-
tant, both for the individual and the whole population, are
cancer and genetic defects in the offspring of the exposed
populations. In research papers, the estimated range of cancer
cases caused by environmental exposure varies from 1 to
100%. Differences in the above range are mainly associated
with variations in the definitions of Benvironmental^ factors
(Parker 2014) . A broader approach to the term
Benvironmental^ indicates that around 90–95% of human can-
cers result from exposure to exogenous and endogenous
agents, including lifestyle and health behavior such as tobacco
smoking, diet, infections, sun radiation, stress, obesity, phys-
ical activity, as well as environmental pollutants from air, wa-
ter and soil, etc. It is also estimated that genetic factors are
responsible for 5 to 10% of these cases (Anand et al. 2008).
World Health Organization reports that 19% of all cancers are
globally attributable to environmental factors, but it refers to a
limited number of factors, i.e., air, water and soil chemical
pollutants, or biological agents, including occupational expo-
sures (Prüss-Üstün and Corvalan 2006). Most substances are
classified as non-threshold carcinogenic substances, which
means that no safe levels of exposure can be determined for
them. Carcinogenic compounds do not differ in their proper-
ties from other xenobiotics. Most of them in some ranges
demonstrate a dose–response effect, undergo transformation
and degradation in the environment through chemical and
biological processes and react with other xenobiotics.
Chemical compounds can enter the human body through
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different pathways, and then they can be metabolized, accu-
mulated, and transported to organs, which consequently may
result in permanent damage and even diseases (Esteban and
Castano 2009; Manzetti 2013).

Exposure to genotoxic factors occurs not only in the work-
place, but it is also connected with pollution of the natural
environment (air, water, soil), therapeutic procedures (radio-
therapy, chemotherapy) and lifestyle, i.e., diet, smoking, alco-
hol consumption, taking medicines, and use of cosmetics and
detergents, as well as sexual behaviors (Wogan et al. 2004).
Factors related to unhealthy lifestyle are one of the main risk
factors of cancer associated with environmental exposure
(Weiderpass 2010).

Adduct formation is the result of a covalent binding
between reactive electrophilic substances and the nucleo-
philic sites in DNA and proteins. The ability of a chemical
to bind to DNA, either directly or after metabolic activa-
tion, is taken as an evidence of mutagenic and carcinogenic
potential. The group of compounds with well-established
genotoxicity are polycyclic aromatic hydrocarbons
(PAHs). The biological activity of these compounds is con-
nected with their structural features, formed between angu-
lar condensed aromatic rings possibly as a result of distor-
tions in a region with maximal impact, termed as Bfjord^ or
Bbay^ regions (Fig. 1). It is obvious that reactivity depends
directly on density of an electron charge. However, geo-
metric distortions in molecules influences charge distribu-
tion and indirectly also its reactivity in certain positions.
Molecules with Bfjord^ regions (e.g., dibenzo[a,l]pyrene)
are generally non-planar and bind preferentially to adenine
nucleotides. On the other hand, PAHs with a Bbay^ region
(e.g., B[a]P) are planar and bind to guanine nucleotides.
Furthermore, increasing the non-planarity of PAHs lowers
their capability of being metabolized to reactive forms
which produce DNA-damaging adducts (Lakshman et al.
2000; Muñoz and Albores 2011).

It has already been shown that DNA adducts are in-
volved at early stages of carcinogenesis. DNA adduct for-
mation is necessary but not sufficient for tumor induction,
and there are many additional factors which contribute to
carcinogenesis (Poirier 2016). PAH–DNA adducts are
measured extensively in biomonitoring studies to examine
exposure to environmental, dietary, lifestyle, and occupa-
tional chemicals, etc. It was observed that genotoxic effects
were dose-dependent, and the DNA adduct level increased
with the increased B[a]P concentration (Whyatt et al. 1998;
Sinha et al. 2005; Singh et al. 2007; Pavanello et al. 2008;
McCarty et al. 2009). Verma et al. (2012). Furthermore,
many studies show that the presence of PAH–DNA adducts
in blood or other organ cells is associated with an increased
relative risk (1.3–7.7) of different types of cancer (Tang
et al. 1995, 2013; Chen et al. 2002; Zhu et al. 2003;
Gammon et al. 2004; Gunter et al. 2007).

Polycyclic aromatic hydrocarbons — occurrence
and human exposure

Polycyclic aromatic hydrocarbons (PAHs) are a large group of
organic compounds with two or more fused aromatic rings.
They have a relatively low solubility in water, but are highly
lipophilic. In addition, aqueous solubility decreases for each
additional ring added to PAHs (Srogi 2007). The behavior of
PAHs in the atmosphere depends on complex physico-
chemical reactions, interactions with other pollutants, and
photochemical transformations, as well as dry and wet depo-
sition. Ubiquitous occurrence and environmental processes
which PAHs are undergoing contribute to their impact on
humans, flora, fauna, water, air, and soil (Kim et al. 2013).
Carcinogenic, mutagenic, and cytotoxic properties have been
confirmed for polycyclic aromatic hydrocarbons. Numerous
epidemiological and toxicological studies confirm a strong
correlation between exposure to PAHs and an increased risk
of cancer incidence. PAHs are formed in the pyrolysis and
incomplete combustion of organic matter of both natural and
anthropogenic origin. These pollutants do not occur in the
environment in the form of single compounds—they are al-
ways composed of a multicomponent mixture. Qualitative and
quantitative composition of these mixtures depends on the
type of burned material and the conditions under which the
combustion process takes place (Sapota 2002).

Natural sources include forest and meadow fires, volcanic
eruptions, reactions of humus compounds under the influence
of soil microorganisms leading to the formation of coal or oil,
and biosynthesis carried out by bacteria, algae, and plants. It
should be noted here that the share of natural resources in the
emission of PAHs into the environment is marginal. Themajor
sources of these substances are industrial processes associated
with burning of oil and coal (coke, aluminum production, or
processing of coal tar), and burning in the municipal sector, as
well as exhaust gases from various types of engines, especially
diesel and tobacco smoke (Klimaszewska 1999; Mielżyńska
2008). Tobacco smoke contains high concentrations of PAHs.
PAHs occur in various environmental compartments, such as
air, water, soil, sediments, and thermally treated food (frying,
baking, grilling, smoking), as well as in pharmaceutical prod-
ucts based on coal tar that are applied to the skin (IARC 2010).
Average concentrations of individual PAHs in the ambient air

Fig. 1 BBay^ and Bfjord^ regions in different PAH conformations
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in urban areas generally range from 1 to 30 ng/m3. However,
concentrations up to several tens of nanograms per cubic me-
ter have been reported in road tunnels or in large cities, where
extensive use of coal or other biomass as residential heating
fuel has been recorded. Estimates of PAH intake from food
vary widely, ranging from a few nanograms to a few micro-
grams per person daily (IARC 2012).

Occupational exposure to PAHs occurs primarily through
inhalation and via skin contact. Exposure to benzo[a]pyrene
was measured in such industries as the following: coal lique-
faction, coal gasification, coke production and coke ovens,
coal-tar distillation, roofing and paving (involving coal-tar
pitch), wood impregnation/preservation with creosote, alumi-
num production (including anode manufacture), carbon-
electrode manufacture, chimney sweeping, and power plants.
The highest levels of exposure to PAHs can be observed in
aluminum production, with values up to 100 μg/m3. Mid-
range levels are recorded in roofing and paving, whereas the
lowest concentrations are observed in coal liquefaction, coal-
tar distillation, wood impregnation, chimney sweeping and in
power plants (IARC 2010, 2012).

The best known PAH compound is benzo[a]pyrene
(B[a]P), which in 2012 was classified among the highly
genotoxic compounds. According to the International
Agency for Research on Cancer (IARC) it belongs to group
1—carcinogenic to humans (IARC 2012). Moreover, the
products containing B[a]P and other PAHs (tobacco smoke,
indoor emissions from household combustion of coal, diesel
exhaust fumes, outdoor air pollution, and particulate matter)
are also classified to group 1 (IARC 2016). Numerous animal
studies confirm carcinogenic properties of B[a]P. Exposure to
B[a]P and/or its mixture causes immunotoxic, teratogenic ef-
fects, and induces apoptosis and cell proliferation, as well as
increased DNAmethylation. In population studies concerning
exposure to the mixture containing this compound, a relation-
ship between exposure and the development of cancers has
been proven. In humans, occupational exposure to
benzo[a]pyrene-containing mixtures was associated with dif-
ferent kinds of cancer: (1) coke production— lung cancer, (2)
coal gasification — lung and bladder, (3) paving and roofing
— lung, (4)coal-tar distillation — skin, (5) soot — lung, oe-
sophagus, haematolymphatic system and skin, (6) aluminum
smelting — lung and bladder, and (7) tobacco smoking —
lung, lip, oral cavity, pharynx, oesophagus, larynx, and blad-
der (IARC 2010, 2012).

PAH–DNA adducts — from biotransformation to DNA
damage formation and repair processes

Xenobiotic metabolism usually occurs in the liver. Most xe-
nobiotics, like PAHs, are lipophilic, bind to lipid membranes
and are transported by lipoproteins in the blood. After en-
trance to the body via lungs, digestion tract, and/or skin,

PAHsmay undergo one or two phases of metabolism. In phase
I, a polar reactive group is introduced into the molecule, ren-
dering it a suitable substrate for phase II enzymes. Phase I
reactions include microsomal monooxygenations, cytosolic
and mitochondrial oxidations, co-oxidations in the prostaglan-
din synthetase reactions, reductions, hydrolyses, and epoxide
hydration. In phase II, following the introduction of a polar
group, conjugating enzymes usually add endogenous substit-
uents, such as sugars, sulfates, or amino acids, which substan-
tially increases water solubility, making it easily excreted.
Although this process is generally a detoxication sequence,
reactive intermediates may be much more toxic than the par-
ent compounds (Guengerich 2008; Hodgson and Rose 2010).
In phase I, three main pathways of PAH activation can be
distinguished: (i) formation of dihydrodiol epoxides catalyzed
by cytochrome P450 enzymes and epoxide hydrolase (CYP/
EH pathway), (ii) formation of a PAH radical cation in a met-
abolic oxidation process by cytochrome P450 peroxidase ac-
tivity, and (iii) formation of ortho-quinones via oxidation of
catechols by dihydrodiol dehydrogenase, a member of aldo–
keto reductase (AKR pathway) (Guengerich 2008; Shimada
2006). Redox cycling of quinones could lead to formation of
ROS, which could also lead to carcinogenesis via oxidative
DNA damage (Moorthy et al. 2015). While the epoxide path-
way leads to the formation of stable DNA adducts, the radical
cations generate labile DNA adducts that are eliminated via
depurination, resulting in apurinic sites (Henkler et al. 2012).
The most common mechanisms of metabolic activation of
PAHs, such as B[a]P, are involving and generating a large
number of metabolites due to the activity of phase I
(activation) and phase II (detoxification) enzymes. In the
phase I oxidation, reactions catalyzed by cytochrome P450
enzymes (CYPs: 1A1, 1A2, 1B1, 3A4) and hydroxylation
by epoxide hydrolase occur. CYP1A1 or CYP1B1 are highly
inducible by the exposure to PAHs via the aryl hydrocarbon
receptor (AhR). The AhR is present in the cytoplasm as a
complex with other proteins such as heat shock protein 90
(Hsp90), p23, and AhR-interacting protein. Having formed a
complex with PAHs, the Hsp90 is released and an AhR–PAH
complex is translocated to the nucleus. There, the AhR–PAH
complex creates a heterodimer with an ARNT (AhR nuclear
translocator), and afterwards binds to DNAvia the xenobiotic
response element (XRE) situated in the promoter region of
CYP1A and CYP1B genes. Therefore, the AhR plays an im-
portant role in the tumorigenesis mediated by PAHs, which
has been illustrated previously (Shimada 2006; Arenas-
Huertero et al. 2011). The obtained diol epoxides are hydro-
philic and can dissolve in water more easily. For this reason,
they are involved in the phase II reactions, i.e., coupled with
endogenous compounds — sulfuric, glucuronic acid, or glu-
tathione (Mielżyńska 2008; Moździerz et al. 2010). Some of
the PAH metabolic intermediates show genotoxic and carci-
nogenic properties (Xue and Warshawsky 2005; IARC 2012).
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Studies examining the carcinogenicity of B[a]P have identi-
fied the 7,8-oxide B[a]P and 7,8-dihydrodiol B[a]P as proxi-
mate carcinogens, and the 7,8-diol-9,10-epoxide B[a]P
(BPDE) as a strong mutagen and ultimate carcinogen (Fig. 2).

One of the well-known PAH compounds is B[a]P, recog-
nized as an indirect mutagen (procarcinogen), which after
metabolic transformation to active derivatives of electrophilic
properties can form covalent bonds with DNA (ATSDR
1995). DNA adducts are compounds which carcinogenic sub-
stances form with cellular macromolecules. Since most of the
carcinogenic compounds or their metabolites are electro-
philes, they can covalently bind with nucleophilic sites in
proteins or DNA (Phillips 2005). Protein adduct formation is
considered to be an alternative of DNA adduct formation, but
only the latter results in critical mutagenic changes. The level
of specific DNA adducts is commonly considered to be a
biomarker of the biologically effective dose, and if the adducts
are able to induce mutations leading to cancer, they may also
be recognized as biomarker of effect (Henderson 2005). DNA
adduct formation during the extent of reaction with a particu-
lar nucleic acid base will depend on the particular stereoiso-
mer. The site of substitution for biologically important adducts
appear to be chemical-class specific (Beland and Poirier
1994). For PAHs, one of the activation pathways is the forma-
tion of dihydrodiol epoxides that covalently bind to exocyclic
amino groups of purines in DNA to form stable adducts.
Another pathway involves the formation of radical cations that
bind to the N7 or C8 of purines to form unstable adducts and
generate apurinic sites in DNA by spontaneous depurination
(Melendez-Colon et al. 1999). The preferred sites for PAH–
DNA adducts formation are the amino group of guanine with
5-nucleophilic sites, and to a lesser extent can bind to the
adenine and cytosine (Beland and Poirier 1994). In the case
of B[a]P metabolites, DNA adducts preferentially react with
N2 of guanine (i.e., dG-N2–BPDE) and/or N6 of adenine (i.e.,
dA-N6–BPDE). Reactions with DNA are clearly non-random.
What is more, higher-order chromatin structure affects the
binding of carcinogens to DNA (Beland and Poirier 1994).
Adduct generation is a pre-mutation change, and inmost cases
it is recognized and processed by repair systems. However,
adducts that have not been removed can initiate a point muta-
tion in the form of substitution or deletion, which is consid-
ered to be the first step in the development of cancer.
Formation of stable PAH–DNA adducts can lead to the induc-
tion of mutations that activate proto-oncogenes or inactivate
tumor suppressor genes as an important event during tumor
initiation (Melendez-Colon et al. 1999).

PAH exposures, in addition to causing DNA adduct forma-
tion, also induce oxidative stress that provokes mutation. If
DNA repair mechanisms work insufficiently, the result is the
accumulation of mutations in DNA, which may induce carci-
nogenesis. Activation of several molecular and cellular re-
sponses is associated with genes involved in apoptosis, cell-

cycle control and DNA repair (Castorena-Torres et al. 2008).
DNA damage responses utilize distinct checkpoints to delay
cell cycle progression, in order to provide an opportunity for
the repair of lesions. Depending on the level of damage, this
cascade can either delay a cell-destructive response or trigger
activation of programmed cell death (Hoeijmakers 2001).
Molecular studies have revealed that DNA adducts block po-
lymerase replication activity, contributing to the increased
DNA damage by reducing the repair activity (Hsu et al.
2005). For B[a]P and other PAHs, the magnitude of DNA
adduct formation depends on the metabolic capacity of the
target cells (Boysen and Hecht 2003). However, a recent study
carried out by Henkler et al. (2012) has demonstrated a suffi-
cient metabolic capacity to generate mutagenic metabolites of
B[a]P and to trigger a significant formation of PAH–DNA
adducts even in human skin. It has been reported that B[a]P
derivatives have the capacity to enter redox cycles and induce
the production of reactive oxygen species (ROS), thereby
causing oxidative stress (An et al. 2011). Free radicals gener-
ated this way react with guanine and cause DNA damage,
including the production of 8-Oxo-2′-deoxyguanosine (8-
oxo-dG). Oxidative DNA damage, such as 8-oxo-dG, may
contribute to carcinogenesis by the mechanism involved in
modulation of gene expression and through the induction of
mutations (Valavanidis et al. 2013). Another pathway is acti-
vation of estrogen receptors (ER) and metabolism by steroid
hormones. Compounds such as PAHs have the ability to dis-
place natural estrogens and occupy ER binding sites
(Vondráček et al. 2002; Plíšková et al. 2005). Nevertheless,
the most important mechanism is a deficient DNA repair sys-
tem responsible for removing cumulative mutations from key
genes involved in cell cycle control, which leads to carcino-
genesis. Differences in response to PAH exposure and indi-
vidual human susceptibility is affected by genetic polymor-
phisms in many genes regulating enzymes involved in activa-
tion, detoxification, and repair processes (Pavanello and Lotti
2014). The most common mechanisms of repair activated af-
ter exposure to PAHs are: nucleotide excursion repair (NER),
base excision repair (BER), recombinant repair and
transcription-coupled repair (TCR). NER is the most impor-
tant mechanism for the removal of bulky DNA adducts caused
by PAHs (Braithwaite et al. 1998). In the case of this mecha-
nism, two subpathways can be distinguished: GG-NER
(global genomic-NER) and TC-NER (transcription-coupled-
NER). The first corrects damage in transcriptionally silent
areas of the genome, while the second one repairs lesions on
the actively transcribed strand of DNA. Nucleotides that are
lesioned due to depurination, deamination, alkylation, or
ROS-mediated oxidation can be eliminated via BER mecha-
nism (Sancar et al. 2004). The role of other mechanisms is still
not clear, but homologous recombination (HR) is related to
some extent to the repair of PAH–DNA damages. Also, mis-
match repair (MMR) probably takes part in elimination of
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oxidative DNA damages caused by PAHs (Li et al. 2016). To a
minor extent, chemical-induced DNA adducts are removed by
MMR. Although it is evident that DNA adducts activate the
DNA repair mechanisms, it is still not well recognized how
these lesions trigger a cell-cycle arrest or apoptosis in the
lesioned cells (Wu et al. 1999; Friedberg 2003).

Methods for identification of DNA adducts

Analyses can be performed on various samples including tis-
sues, isolated cells, and intact or hydrolyzed DNA from a
variety of biological samples used in human monitoring.
Sensitivity and specificity are considered to be the key factors
for selecting the type of method for assessing the DNA dam-
age. In particular, certain procedures can lead to the decrease
of DNA adduct stability, which may have a significant impact
on the determination of their amount. Several factors, such as
sample preparation, storage conditions, handling methods,
and so on can influence the outcome of the DNA adduct
analysis. The amount of DNA needed for the analyses de-
pends on the method and ranges widely, from <1 μg to
3 mg. Among the techniques which enable identification and
quantification of adducts, the following techniques can be
distinguished: techniques based on gas chromatography
(GC) or high-performance liquid chromatography (HPLC)
with electron capture detection (ECD), electrochemical or
fluorescence detection (FD) with single (MS) or tandem
(MS/MS)mass spectrometry or accelerator mass spectrometry
(AMS). Other techniques are based on radioactive labeling

(14C, 3H), 32P-postlabeling or histochemical and immunolog-
ical methods. In the studies of adducts the PCR technique (i.e.,
ligation-mediated PCR) can also be applied, as well as non-
specific methods, such as the comet assay. These methods
differ mainly in sensitivity, and range from ∼1 adduct in 104

to 1012 of nucleotides. All the above-mentioned techniques,
except for immunohistochemistry, require DNA isolation,
separation, and detection of adducts. On the other hand, how-
ever, in the analyses based on immunochemistry the use of
antibodies is necessary. Furthermore, monoclonal antibodies
are more specific than polyclonal antibodies, whereas poly-
clonal antibodies usually have greater sensitivity
(Himmelstein et al. 2009). Each approach presents different
advantages and limitations, and the most appropriate method
depends on the type of the sample, level of damage, and nature
of the investigation, as well as practical considerations (Brown
2012). In Table 1, a comparison of analytical methods used for
quantification of DNA adducts is presented.

Methods for identification of PAH-related DNA adducts

In recent years, one of the methods frequently used in the
studies of DNA adducts with aromatic compounds including
PAHs was 32P-postlabeling technique (Szyfter et al. 1994; van
Delf et al. 2001; Teixeira et al. 2002; Taioli et al. 2007;
Umbuziero et al. 2008; Topinka et al. 2009; Wilson et al.
2011). The main advantage of this method is its high sensitiv-
ity and the low amount of DNA required, but it is character-
ized by limited specificity, because it detects stable adducts
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Fig. 2 Metabolic activation
pathways of benzo[a]pyrene
(Lodovici et al. 2004)
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Table 1 Summary of analytical
methods used for quantification
of DNA adducts (Himmelstein
et al. 2009)

Methods Sensitivity Amount of
DNA
required

Advantages Limitations

Accelerator mass
spectrometry (AMS)

∼1–10
adduct/1012-

nt

1–1,000 μg High sensitivity;
adducts originate
from radiolabeled
compound

Various requirements
including the need
for 14C/3H-labeled
compound, complex
sample preparation,
and good purification
of DNA to prevent
interferences with
contaminants
including protein,
specialized
equipment not
widely available,
limited specificity
due to the lack of
structural
information

GC-ECD ∼1
adduct/1011-

nt

100 μg High sensitivity Requires (laborious)
derivatization,
internal standards,
and specialized
equipment

32P-postlabeling ∼1
adduct/1010-

nt

1–10 μg Low amount of DNA
required; sensitive
and versatile

High levels of
radioactivity are
required; measures
general damage but
has limited
specificity; adduct
standards required
for
co-chromatography
studies

HPLC-MS/MS ∼1
adduct/109-

nt

10–100 μg Structural
identification; high
accuracy (MRM
mode)

Requires specialized
equipment; may
require internal
standards

GC-MS ∼1
adduct/109-

nt

10–500 μg Structural
identification

Requires derivatization,
internal standards,
and specialized
equipment; in some
GC-MS techniques
there is a high risk of
artifactual oxidative
DNA damage

Radiolabeled binding
assay

∼1–10
adduct/108-

nt

0.5–3 mg Simple (if negative
result); adducts
originate from
radiolabeled
compound

Radiolabeled (14C or
3H) compound
required; no
structural
information
available;
interference with
contaminants
including protein
(requires good
purification of DNA)

HPLC fluorescence or
electrochemical
detection

∼1–10
adduct/108-

nt

20–100 μg Simple; robust method;
inexpensive; the use
of standards enables
a limited amount of

Only applicable for
fluorescent/
electro-chemically
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representative of the whole group of PAHs, called bulky DNA
adducts (Himmelstein et al. 2009). What is more, nowadays
due to the harmful effect of high radioactivity its application is
limited.

Another group of methods based on immunological reac-
tions used in various studies for detection of specific BPDE-1-
DNA adducts includes: immunohistochemical techniques
(IHC) (Santella and Zhang 2011), chemiluminescence immu-
noassay (CIA) (Divi et al. 2002; John et al. 2010), enzyme-
linked immunosorbent assay (ELISA) (Schoket 1999; Whyatt
et al. 2001; Topinka et al. 2009; Borska et al. 2014), or
dissociation-enhanced lanthanide fluoroimmunoassay
(DELFIA) (Divi et al. 2002). Identification of B[a]P-specific
adducts such as diol epoxides of benzo[a]pyrene (BPDE) was
developed with polyclonal and monoclonal antibodies to rec-
ognize DNA lesions. The first studies on BPDE–DNA ad-
ducts were validated in mouse cells and human white blood
cells treated in vitro with B[a]P (Poirier et al. 1982; Santella
et al. 1985; van Schooten et al. 1991). Immunochemical tech-
niques were used in human lymphocytes occupationally and
environmentally exposed to PAHs (Motykiewicz et al. 1995).
BPDE–DNA adducts have also been determined in oral,
urothelial, ovarian, and cervical cells, as well as blood vessels
of smokers and non-smokers (Zhang et al. 1995, 1998; Hsu
et al. 1997; Zenzes et al. 1998; Mancini et al. 1999; Romano
et al. 1999). In epithelial cells from the oral cavity, these spe-
cific adducts were evaluated in environmentally exposed
women from Silesia, Poland (Motykiewicz et al. 1998). In
children blood lymphocyte BPDE–DNA adducts were identi-
fied using ELISA method (Borska et al. 2014).

An alternative to semi-quantitative immunochemical tech-
niques is the analysis of DNA adducts using high-
performance liquid chromatography with fluorescence detec-
tion (HPLC/FD), which was improved in further studies on
human lung tissue (Alexandrov et al. 1992). In white blood
cells, this method was successfully applied in populations oc-
cupationally exposed to PAHs and in tobacco smokers (Rojas
et al. 1995; Pavanello et al. 1999, 2004; Mooney et al. 2005;

Rundle et al. 2007). BPDE–DNA adducts were identified in
the blood and cord blood of mother and newborn children
from four different populations exposed to ambient PAHs
(Perera et al. 2005).

Conclusions

The identification of toxic chemicals that enter the body from
exogenous sources, such as air pollutants, radiation, water
contaminants, food, and drugs, must be carried out together
with endogenous chemicals derived from cellular metabolism
or endogenous processes, including inflammation, oxidative
stress, infection, and chemicals derived from complex interac-
tions with the intestinal flora (Balbo et al. 2014). The interac-
tion of different PAHs may lead to additive, synergistic, or
antagonistic effects in terms of DNA adduct formation and
carcinogenic activity resulting from changes in metabolic ac-
tivation of reactive intermediates and DNA repair (Singh et al.
2010). The investigation of these effects has led to the devel-
opment of adductomic approaches to the investigation of pro-
tein adducts and DNA adducts. DNA adductomics is a rela-
tively new field, and with recent improvements in sensitivity,
liquid chromatography–mass spectrometry (LC–MS) is
primed to replace 32P-postlabeling as the preferred approach
to DNA adduct screening in humans because of its selectivity,
specificity, and the structural information it provides.
Unfortunately, some improvements in sample preparation
and cleanup are still required, especially when detection of
hydrophilic adducts is taken into account (Balbo et al.
2014). On the other hand, in the case of the previously men-
tioned immunohistochemical techniques, which are rarely
discussed in scientific publications, evaluation, and validation
of their sensitivity would be necessary.

Summing up, measurements of the DNA adducts may be
carried out using various methodologies, but no single or se-
lected battery of analyses can be recommended as the most
useful for application to risk assessment because all these

Table 1 (continued)
Methods Sensitivity Amount of

DNA
required

Advantages Limitations

structural
information

active adducts;
standards required

Immunoassay ∼2.5
adduct/108-

nt

1–200 μg Applies antibodies
targeted at a specific
DNA adduct

Risk of cross-reactivity
with other adducts

Immunohistochemistry Variable – Robust and easy;
allows localization
of adducts

Poor identification;
semi-quantitative;
limited structural
information available
based on the applied
antibody
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techniques have their own specific advantages, and this means
that the choice of the biomarker should be made on a case-by-
case basis (Himmelstein et al. 2009).
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